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Parallel Data Transfer Using MPI-IO

Abstract

This paper describes a new implementation of the proposed MPI-IO [2] standard for parallel I/O. Our

system uses third-party transfer to move data over an external network between the processors where it

is used and the I/O devices where it resides. Data travels directly from source to destination, without

the need for shu�ing it among processors or funneling it through a central node. Our distributed server

model lets multiple compute nodes share the burden of coordinating data transfers.

The system is built on the High Performance Storage System (HPSS) [3, 12, 14], and it runs on a

Meiko CS-2 parallel computer, where it is currently undergoing integration and performance testing.

1 Introduction

The Scalable I/O Facility (SIOF) project1 is an e�ort to develop an I/O system for parallel computers that

o�ers both high aggregate bandwidth and the ability to manage very large �les [9]. To meet these needs, the

SIOF project is developing a hardware infrastructure that will connect the processors in a parallel computer

to multiple storage devices through a Fibre Channel network [4]. The project is also developing an application

programming interface (API) that will give large scienti�c codes 
exible, e�cient access to the I/O system

without forcing programmers to manage low-level details. This paper describes the implementation of the

SIOF API software.

1.1 Background

Parallel programs use a number of strategies to manage large data sets. Most parallel computers o�er a

global �le system that all the processors can access. Data typically travels over the internal communication

network between the compute nodes and one or more I/O nodes, which manage a set of storage devices. This

arrangement gives all the nodes access to all the �les, but I/O tra�c must compete with regular message

tra�c for access to the communication network, and depending on the con�guration of the system, the

I/O nodes may become a bottleneck to data transfer. Some parallel machines have local disks attached to

1SIOF should not be confused with a di�erent project that has a similar name, the Scalable I/O Initiative [10].
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each compute node, and programs may write separate �les from each node to its local disk. This approach

o�ers high aggregate bandwidth, since nodes transfer data through separate, dedicated channels. However,

merging the data in these separate �les or reading the �les on a di�erent set of nodes can be inconvenient.

The SIOF architecture uses a separate I/O network to connect each compute node to the storage devices.

This allows I/O to proceed in parallel at a high aggregate bandwidth. It also lets a program treat data

distributed over multiple devices as a single logical �le. The system supports third-party transfers, so one

compute node can orchestrate data transfers between several disks and processors. SIOF uses the High

Performance Storage System (HPSS) [3, 12, 14] to manage distributed �les and third-party transfers. HPSS

is a joint development project of IBM and several U.S. national laboratories and supercomputer centers.

Since the HPSS API is designed mainly for shared-memory systems, and since it requires programmers to

specify many details in a parallel transfer, the SIOF project is developing a separate API for message-passing

systems. This API is based on the proposed MPI-IO standard [2], which in turn is based on the popular MPI

(Message-Passing Interface) standard [5]. Our initial implementation of the SIOF hardware and software

runs on a Meiko CS-2 parallel computer.

1.2 The SIOF application programming interface

Several MPI-IO development e�orts are now underway; however because the architecture of our underlying

I/O system is unique, the SIOF implementation has several noteworthy features:

� Control of access to a given open �le is centralized, but data transfer is distributed and direct.

� A distributed server model spreads the burden of controlling di�erent open �les among di�erent compute

nodes.

� When multiple processes participate in collective read or write operations, the system can determine

dynamically how to group these requests for high throughput based on the transfer size, the distribution

of data among the compute nodes and I/O devices, and other parameters.

The next two sections give the background to SIOF, HPSS, and the MPI-IO standard. Section 4 examines

the architecture of our MPI-IO implementation, and Section 5 describes how we manage collective I/O
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requests. Section 6 reports the current status of the project and our future plans for it. We conclude in

Section 7 with a summary of the SIOF API.

2 The Scalable I/O Facility and HPSS

The SIOF project goal is to provide a \network-centered, scalable storage system that supports parallel

I/O" [9]. To this end, SIOF is collaborating with HPSS developers to extend the HPSS environment in two

areas. First, it is introducing Fibre Channel (FC) interconnectivity in order to support network-attached

peripherals [15]. Second, it is providing an MPI-IO interface to the HPSS client API, as described in the

sections that follow.

The SIOF implementation uses a crosspoint-switched FC fabric to connect the processors of a Meiko CS-2

directly to disk arrays, parallel tapes, and frame bu�ers. Each compute node is capable of independent I/O

across the FC fabric so that all nodes may perform I/O in parallel. The SIOF API orchestrates coordinated

accesses across the processors in a distributed computation, with each processor working on a part of a �le.

The envisioned architecture is shown in Figure 1.

The SIOF extensions rely on HPSS to achieve this implementation. HPSS is a standards-based, modular,

hierarchical storage system that supports scalability in a variety of parallel environments. HPSS consists

of multiple layers of interfaces that provide secure parallel access to the �les of a storage system. The

interfaces are implemented using DCE (Distributed Computing Environment) [7] and Transarc's Encina [13]

transaction-based remote procedure calls.

The higher-level interfaces implement the administration (e.g., naming) and security (e.g., access control)

of the storage system, while the lower-level interfaces implement the mechanics of the parallel data transfers

required by �le access commands. The interfaces of particular interest to the SIOF are the data movers (see

Figure 3).

For any given data transfer there is a mover on the application or client side, and a corresponding mover

on the HPSS side. These two movers determine the details of a given data transfer from a data structure

called an IOD (I/O descriptor). Within this descriptor, a data transfer consists of a mapping from the source
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Figure 1: The Scalable I/O Facility architecture consists of a Meiko CS-2, an IBM RS6000 HPSS server, and a collection

of tape drives and disk arrays. A Fibre Channel network connects the storage devices to the Meiko compute nodes.
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Figure 2: In a simple transfer, data moves from a source into a transfer stream and then to a sink with no reordering. In

a distributed transfer, HPSS can move blocks of any size from source to sink in any order.

of the transfer into a data transfer stream, and a corresponding mapping from the transfer stream into the

destination or sink of the transfer.

In the simplest case, both the source and sink of the transfer are one contiguous block of bytes. But

with distributed �les and distributed applications, blocks may be discontiguous at either the source or the

destination. The descriptive 
exibility of the HPSS IOD allows a single transfer to consist of bytes striped

across multiple nodes, multiple storage devices, or both. In each IOD, the transfer stream mappings from

the source and to the sink are each represented by a list of one or more descriptors, where each entry on the

list describes a contiguous block of bytes.
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In the simple case, the HPSS client API initiates data transfers through Unix-like read and write

commands. These interfaces can be used for contiguous transfers, and HPSS will construct an IOD for the

transfer automatically. More complex transfers require a client application to construct an appropriate IOD

with the necessary mappings and to deliver this IOD to HPSS through readlist and writelist commands.

Application programs using the SIOF API (rather than the HPSS API) don't create IODs directly.

Instead, the SIOF API code converts the MPI datatype (see Section 3) speci�ed in open, read, and write

operations to IODs. The motivation for hiding the details of the IOD construction is two-fold: the client

application can use the simpler MPI-like interface to describe the transfer, and the new interface layer

introduces the possibility of optimizing transfers.

The HPSS architecture is also designed to allow for potential optimizations as a data transfer request is

processed. The higher-level servers rewrite the client IOD and dispense one or more IODs to HPSS movers

to complete a given transfer. In the process, HPSS uses its knowledge of how the �le being accessed is

distributed across storage devices, and which HPSS movers control those devices, to break the client IOD

into component IODs to be distributed to the HPSS movers. Although no reordering or combining of client

IODs is presently done on the HPSS side, the design of HPSS allows this in the future.

Note that although there is one logical mover for the client, and another for HPSS for each transfer, there

may in fact be multiple movers active on both sides: one per participating node on the client side, and one

per device on the HPSS side. These movers are threads that are spawned when a transfer begins, and they

terminate when the transfer is complete.

As shown above, the architecture of HPSS allows full generality of how source blocks are mapped into

a data transfer and thence into sink blocks, but it is expected that the best performance will always be

achieved when source and sink blocks match in size and number exactly. This will reduce contention (e.g.,

where more than one node is attempting to access the same device) and allow maximum parallelization of

the transfer.
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3 MPI-IO

In choosing an interface for SIOF that would work well in message-passing programs, we examined several

parallel �le systems. We selected MPI-IO because it o�ers a good range of parallel I/O features and because

it appears to have a good chance of becoming a widely-implemented standard.

MPI-IO is a proposed extension to the widely accepted MPI standard to address the problems of parallel

�le I/O. The main advantages of a standard parallel I/O interface are portability and ease of use. Within

an MPI message-passing application, the MPI-IO interface provides a standard for describing parallel I/O

operations that are 
exible, portable, and e�cient. MPI-IO supports both independent and collective �le

I/O operations by processes in a parallel application. MPI-IO is a high-level interface that can be used

to describe the partitioning of �le data among processes and complete transfers of global data structures

between process memories and �les.

Like most parallel I/O libraries, MPI-IO supports collective requests, where multiple processes participate

in an operation such as reading or writing a �le. In many cases, an I/O system can gather collective requests

from multiple nodes into a single I/O request. It can often complete this joint request more e�ciently than

a group of independent requests. In some implementations of parallel I/O systems, collective requests may

perform an implicit barrier synchronization on the participating nodes. The synchronization allows a server

to collect data from all the nodes participating in the operation before completing the operation. However,

the MPI-IO standard does not require synchronization and warns users not to depend on it.

In a parallel environment, multiple processes can access a �le simultaneously. Parallel processes often

make interleaved accesses, and they may also access separate portions of the �le. Some parallel �le systems

have an interface that is based on the POSIX [8] standard for �le I/O, but this interface is designed for

an environment where �les are not shared by multiple processes at once (with the exception of pipes and

their restricted access possibilities) [11]. Furthermore, POSIX �le operations do not allow access to multiple

discontiguous parts of the �le in a single operation.

MPI uses user-de�ned and built-in datatypes to describe how data is laid out in a memory bu�er. In

MPI-IO, datatypes used in this way are called bu�er types. MPI-IO also uses MPI datatypes to describe
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the partitioning of �le data among processes. A �le type describes a data pattern that can be repeated

throughout the �le or part of the �le. A process can only access the �le data that matches items in its �le

type. Data in areas not described by a process' �le type (holes) can be accessed by other processes that use

complementary �le types.

MPI associates a datatype with each message. The length of the message is an integral number of

occurrences of the datatype. This method of de�ning a message is more portable than specifying the

message length in bytes. Similarly, MPI-IO de�nes a third datatype called an elementary type or etype.

Both the bu�er type and the �le type contain an integral number of etypes. This allows o�sets into a �le to

be expressed in etypes rather than bytes. Using MPI datatypes has the advantage of added 
exibility and

expressiveness, as well as portability.

4 SIOF API architecture

Having chosen MPI-IO as our application programming interface, we designed our implementation with

several goals in mind:

� Make e�cient use of I/O resources, including the storage devices, the external network, the processing

nodes, and the HPSS system.

� Avoid creating bottlenecks that would limit the scalability of the I/O system.

� Minimize barrier synchronizations among the processes of the application, since these can slow down

operation and present opportunities for deadlock.

This section describes how we designed the SIOF API to achieve these goals.

We consider an application to have one process per node, and in this description we assume that all of

the application code executes in one thread per process. The SIOF API spawns several additional threads

in each process that share its address space.

The thread executing the application is called the client thread, and each process spawns a server thread

when the API is initialized. The client thread includes code that implements the interfaces of the MPI-IO
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functions. The server thread executes the code that issues requests to HPSS.

One server thread manages a given open �le on behalf of all the nodes, and servers on di�erent processors

can manage di�erent open �les. This prevents any single node from becoming a bottleneck or bearing the

burden of managing all the open �les. We call this aspect of the architecture the distributed server model.

Conceptually, the server and client threads could be separate processes, since they share no data structures.

However MPI cannot at present direct messages to di�erent processes on the same node, so using MPI for

communication requires the server and client to reside in the same process.

Any time a client thread needs to operate on a �le, it sends a request via MPI to the server thread on the

appropriate node. Each server maintains a table of the open �les it manages. When a request arrives, the

server looks up the HPSS �le descriptor and other information about the �le and then spawns a driver thread

to issue the HPSS request. When this request is complete, the driver thread sends a response message to

the client and then terminates. The client thread receives the message and the original MPI-IO call returns

a result to the application program.

4.1 Opening and closing a �le

Opening a �le in MPI-IO is always a collective operation, which means that all the nodes in the program (or a

speci�c subset of them) participate. The nodes select a server by hashing the �le name and other parameters

to the open call to produce a node number. Since all the nodes must specify the same parameters to the

call, they will all select the same node without needing to communicate with each other. The server's node

number is stored in a local �le table on each node for use in future requests.

Each node sends a request to the server as soon as it is ready; there is no barrier synchronization upon

opening a �le. When the server receives the �rst open request for a given �le, it creates an entry in the

�le table and spawns a driver thread to call HPSS. Subsequent requests from other nodes to open the same

�le will �nd a matching request in the �le table. If the HPSS open call has already completed, the server

will send a reply containing the data from the completed (or possibly failed) call. If the HPSS call is still

pending, the new request will be placed in a queue. As soon as the driver thread completes the HPSS call, it

will send responses to the nodes with queued requests. This arrangement guarantees that each open request
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generates exactly one call to HPSS, and requests from other nodes to open the same �le share the results of

this call.

Closing a �le is also a collective operation, and the nodes again send individual requests to the server.

This time, however, the server delays spawning a thread to issue the HPSS close call until all the requests

have arrived. Therefore, closing a �le is a synchronizing operation. This is necessary because the �le cannot

be closed until all the nodes are �nished with it, and any errors that occur when HPSS closes the �le must

be reported to all participating nodes. Moreover, if the close operation does not synchronize, a node might

treat a �le as if it were closed and its bu�ers 
ushed when the �le is in fact still open and handling requests

from other nodes.

4.2 Reading and writing

Programs can read and write �les collectively or independently, and they can intermix these operations freely

on the same �le (provided that all nodes that open a �le participate in the collective operations). Figure 3

shows how these operations work.

For an independent read or write operation, the client �rst spawns a mover thread that will copy data

between the memory bu�er and the network channel to the storage device. When this thread has started,

the client sends a read or write request to the server. The request includes the information that the server

will need to construct an HPSS IOD (see Section 2). The server spawns a driver thread to issue the HPSS

readlist or writelist call. HPSS transfers the data directly between the node and the storage device and

then returns from the readlist or writelist call. Part of the return data is a structure called an IOR (I/O

reply), which the driver thread sends back to the mover before terminating. The mover compares the IOR

to its own record of the transfer, then returns status information to the client thread and terminates. The

SIOF API code in the client thread transforms the status information into MPI-IO return data before �nally

returning from the MPI-IO call.

Collective operations require a few extra steps. The details appear in Section 5, but the main di�erence

from independent operations is that the server may gather up several requests from di�erent nodes and issue

them together in a single HPSS call.
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Figure 3: The SIOF API is implemented in several threads on each node (shown here as four large, vertical rectangles).

Outer shaded boxes represent threads; inner boxes are functional modules within a thread. Outlined boxes show modules

not participating in an operation. For read and write operations, control is centralized at a server thread, but data travels

through separate, high-bandwidth channels between storage devices and compute nodes.

11



4.3 File types and bu�er types

Section 3 noted that MPI-IO programs can use �le types and bu�er types to access discontiguous regions

of data. MPI-IO translates these datatypes into an internal format called a chunk map. A chunk map is a

list of contiguous data blocks, and it contains only the information that the SIOF API needs from an MPI

datatype to construct an IOD.

Because MPI speci�es no functions for accessing the layout information in a datatype, the SIOF API

code must explicitly read the internal data structures of the MPI implementation on which it is based

(MPICH [1]). One reason for using chunk maps is to isolate the system-dependent code as much as possible,

so most of the SIOF API code works with chunk maps rather than MPI datatype structures.

The SIOF API stores the chunk map of the �le type for each node and each open �le in the server thread's

�le table. When a �le is read or written, the server constructs an HPSS IOD for the data to be transferred,

with source and sink mappings for each contiguous chunk of data to be accessed. It passes this IOD to a

single HPSS call.

Meanwhile, the mover thread parses the chunk map corresponding to the bu�er type to determine which

data to access in memory. The SIOF API does not compare bu�er types with �le types or decompose them

with respect to each other; HPSS and the client mover thread can each behave as if the other is accessing a

single, contiguous stream of data.

5 Managing collective operations

The SIOF API currently supports four types of data access: the independent read and write operations,

and collective versions called read-all and write-all. Structuring the server to permit collective operations

on reads and writes requires that several issues be addressed:

� How are collective operations implemented?

� How is the decision made to dispatch them?

� What optimizations are available for collective operations?
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This section discusses these three issues.

5.1 Collective implementation

From the server's point of view, the life-cycle of a collective operation begins when the server receives the

�rst MPI message containing a data access request from a client thread. The request is added to a list of

pending data accesses for that �le. This data access list is traversed after either the receipt of a client's

message for a �le operation, or a predetermined period of time has elapsed, whichever comes �rst. As the

server traverses the list, it updates a dispatch priority for each pending collective operation. The dispatch

priority determines when the server will initiate the data access; if the priority is over a predetermined

threshold, the server spawns a thread to issue the HPSS readlist or writelist call. If a collective write

request includes overlapping �le accesses by di�erent nodes, the server constructs an IOD that resolves the

con
ict in a well-de�ned way.

The data access list also records the number of outstanding clients, which is needed to handle cases

where the server dispatches a request before all clients have checked in. The number of clients is initially

the number of nodes that have jointly opened the same �le, but if two or more dispatches are used for the

same operation, it will be the number of clients remaining for the operation (i.e., the number not already

checked in and previously dispatched).

5.2 Determining dispatch priority

How the dispatch priority is determined will have a strong e�ect on performance and utilization of the I/O

system. For example, one can imagine a scenario in which 15 clients of a 16-client application check in at

nearly the same time, but the 16th client checks in much later. In such a scenario, it may be advantageous

to forgo waiting for the last node to check in before dispatching the requests for the �rst 15 nodes. On the

other hand, issuing a request too soon will reduce the ability of the SIOF API library to amortize latency

costs involved in setting up a data access. A number of factors may play a part in determining the dispatch

priority. At the present, our implementation for MPI-IO read-all and write-all operations blocks until all

client nodes have checked in. However, we plan to investigate several algorithms to determine their e�ect

13



on utilization and performance. These algorithms will consider, to varying degrees, the time since a request

was �rst issued, information on which clients have checked in, the transfer size, the granularity of the �le

types, and whether the access is to tape or disk.

5.3 Optimizations

The architecture of the SIOF API makes several optimizations feasible. These include:

� Asynchronous operation.

� Grouping accesses on the same storage device.

� Grouping accesses on the same processor.

� Coalescing small accesses.

The �rst optimization reduces a server's sensitivity to the latency of HPSS calls. By spawning a thread

for each such call, the server can handle multiple requests concurrently.

Grouping accesses to the same storage device can help improve cache performance. For example, certain

decompositions of matrices among processors can produce requests for small, interleaved chunks of data [6].

By constructing IODs so that requests for sequential data appear in order, the server can increase the

probability of cache hits on a disk. On the other hand, sending small blocks of data between one disk and

multiple nodes in round-robin order may produce excessive switching latency in the external network. In

that case, it may be better to group requests so that data residing on one node is accessed sequentially.

Performance tuning will help us determine how best to arrange the parts of a collective request.

Even if there is no locality to be exploited in a collective operation, grouping requests from multiple

nodes into a single readlist or writelist call can amortize one-time expenses incurred in I/O operations,

such as the cost of an RPC transaction between the parallel computer and the HPSS controller.
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6 Current status

The SIOF API is currently undergoing integration testing, and we expect to do performance testing and

tuning by the end of 1995. Our initial version of the code includes both independent and collective read

and write operations. MPI-IO �le types and bu�er types are fully functional. The main features of MPI-IO

that we have not yet implemented are nonblocking I/O calls, shared �le pointers, and exception handling.

We expect to implement these features over the next year. Over the longer term, we will investigate new

features that will simplify access to nonuniform data layouts.

7 Conclusion

The SIOF API is a new implementation of the proposed MPI-IO standard. It is designed as a high-level

user interface for the HPSS �le system, and its initial implementation is on a Meiko CS-2 parallel computer.

Because HPSS supports third-party transfers over an external network, our implementation can transfer

data in parallel between processors and storage devices while presenting a global view of the �le system that

all nodes can access. Our distributed server model spreads the burden of coordinating data transfers over

multiple nodes. Control of a given open �le is centralized, but data transfer can proceed in parallel. We

believe this combination of features will o�er the high aggregate I/O bandwidth for large data transfers that

many parallel scienti�c codes need.
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